Computational Science
In the College of Sciences

OFFICE: Geology/Mathematics/Computer Science 206H
TELEPHONE: 619-594-3430 / FAX: 619-594-2459
http://www.csrc.sdsu.edu

Faculty
Program Director: José E. Castillo (Mathematics and Statistics)
Associated Faculty: Bailey (Mathematics and Statistics), Bajlon (Physics), Bhattacharjee (Mechanical Engineering), Blomgren (Mathematics and Statistics), Bromley (Physics), Carretero (Mathematics and Statistics), Cooksy (Chemistry and Biochemistry), Day (Geological Sciences), Duncan (Mathematics and Statistics), Edwards (Computer Science), Fan (Mathematics and Statistics), Frey (Biology), Johnson (Physics), Kumar (Electrical and Computer Engineering), Levine (Mathematics and Statistics), Love (Chemistry and Biochemistry), Mahaffy (Mathematics and Statistics), Mellors (Geological Sciences), Olevsky (Mechanical Engineering), Olsen (Geological Sciences), O’Sullivan (Mathematics and Statistics), Palacios (Mathematics and Statistics), Paolini (Biology, Emeritus), Papin (Physics and Associate Dean, College of Sciences), Pullman (Chemistry and Biochemistry), Roch (Computer Science), Rohwer (Biology), Salamon (Mathematics and Statistics), Sandquist (Astronomy), Segall (Biological Sciences), Shen (Mathematics and Statistics), Venkatacharan (Aerospace Engineering and Engineering Mechanics), Weber (Physics), Zeller (Biology).

Offered by Computational Science
Doctor of Philosophy degree in computational science.
Master of Science degree in computational science.
Concentration in professional applications.
Certificate in professional computational science, advanced (refer to the Graduate Bulletin).

Courses (COMP)
Refer to Courses and Curricula and University Policies sections of this catalog for explanation of the course numbering system, unit or credit hour, prerequisites, and related information.

UPPER DIVISION COURSES
(Also Acceptable for Advanced Degrees)

COMP 521. Introduction to Computational Science (3)
Prerequisite: Mathematics 151.
Matrices and linear equations, solving ordinary differential equations (ODEs), vector spaces, closed form solutions, qualitative theory, Eigenvalues, linear maps, linear differential equations, other techniques, nonlinear systems, higher dimensional systems.

COMP 526. Computational Methods for Scientists (3)
Prerequisites: Mathematics 252 and 254.
Translating mathematical problem descriptions to computer programs. Introduction to Unix system.

COMP 536. Computational Modeling for Scientists (3)
Prerequisite: Mathematics 151.
Models, computational tools, errors, system dynamics, growth, stability, multicompartiment models, Euler’s, Runge-Kutta methods, system dynamics, infectious disease, enzyme kinetics, environmental cycles, cardiovascular system, metabolism, global warming, empirical models, HIV, population distributions, diffusion, HPC.

COMP 589. Computational Imaging (3)
Prerequisites: Mathematics 150 and 254.
Mathematical techniques used for image processing and analysis. Emphasis on variational techniques which lead to PDE based image processing algorithms, most are known as diffusion filters, and interface propagation techniques for which emphasis will be implicit representation (level-set methods). Representation and properties of curves and surfaces, statistical (PCA/ICA), and multi-resolution image analysis techniques.

COMP 596. Advanced Topics in Computational Science (1–4)
Prerequisite: Consent of instructor.
Selected topics in computational science, may be repeated with the approval of the instructor. See Class Schedule for specific content. Limit of nine units of any combination of 296, 496, 596 courses applicable to a bachelor’s degree. Maximum credit of six units of 596 applicable to a bachelor’s degree. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

GRADUATE COURSES
Refer to the Graduate Bulletin.