Computer Science
In the College of Sciences

OFFICE: Geology/Mathematics/Computer Science 413
TELEPHONE: 619-594-6191
http://www.cs.sdsu.edu

Faculty
Leland L. Beck, Ph.D., Professor of Computer Science, Chair of Department
John L. Carroll, Ph.D., Professor of Computer Science
John D. Donald, Ph.D., Professor of Computer Science, Emeritus
Kris W. Stewart, Ph.D., Professor of Computer Science
Roman W. Swinarski, Ph.D., Professor of Computer Science
Mahmoud Tarokh, Ph.D., Professor of Computer Science
Carl F. Eckberg, Ph.D., Associate Professor of Computer Science
Robert A. Edwards, Ph.D., Associate Professor of Computer Science
Marie A. Roch, Ph.D., Associate Professor of Computer Science
Faramarz Valafar, Ph.D., Associate Professor of Computer Science
Roger E. Whitney, Ph.D., Associate Professor of Computer Science
Tao Xie, Ph.D., Associate Professor of Computer Science
William A. Root, M.S., Staff Scientist

Associateships
Graduate teaching associateships in computer science are available to a limited number of qualified students. Application blanks and additional information may be secured from the chair of the Department of Computer Science.

General Information
The Department of Computer Science offers graduate study leading to the Master of Science degree in computer science. The areas in which courses are offered include software, systems, architecture, artificial intelligence, and computer science theory.

Master's level research projects are available in the following areas of computer science: artificial intelligence, databases, high performance computing, web application, distributed systems, multiprocessing, operating systems, graphics, neural networks, formal languages, numerical methods, robotics, signal processing, and computational complexity. Specialized laboratories exist for microprocessor architecture, graphics, and robotics and intelligent machines.

A master's degree in computer science provides education and creative experience to prepare graduates for advanced professional employment in industry or government, or for college-level teaching.

Admission to Graduate Study
All students must satisfy the general requirements for admission to the university with classified graduate standing, as described in Part Two of this bulletin. In addition, for fully classified graduate standing students must complete Computer Science 560 and 570 or equivalent. Classified graduate standing is prerequisite to all 600- and 700-level courses; conditional graduate standing is possible. Students convicted of plagiarism or cheating on examinations may lose classified graduate standing.

Students applying for admission should electronically submit the university application available at http://www.csumentor.edu along with the $55 application fee.

All applicants must submit admissions materials to SDSU Graduate Admissions. Refer to section on Admission to Postbaccalaureate and Graduate Study in this bulletin for further details.

Graduate Admissions
The following materials should be submitted as a complete package directly to:
Graduate Admissions
Enrollment Services
San Diego State University
San Diego, CA 92182-7416

1. Official transcripts (in sealed envelopes) from all postsecondary institutions attended;
 - Note:
 - Students who attended SDSU need only submit transcripts for work completed since last attendance.
 - Students with international coursework must submit both the official transcript and proof of degree. If documents are in a language other than English, they must be accompanied by a certified English translation.
 2. GRE scores (http://www.ets.org, SDSU institution code 4682);
 3. English language score, if medium of instruction was in a language other than English (http://www.ets.org, SDSU institution code 4682).

Advancement to Candidacy
All students must satisfy the general requirements for advancement to candidacy as described in Part Four of this bulletin.

Specific Requirements for the Master of Science Degree in Computer Science
(Major Code: 07011) (SIMS Code: 773803)

In addition to meeting the requirements for classified graduate standing and the basic requirements for the master’s degree as described in Part Four of this bulletin, the student must meet the following departmental requirements:

1. Complete a minimum of 30 units of 500-, 600-, and 700-level courses selected with the approval of the adviser. One to three courses listed below in the ALC area of study may replace one level electrical engineering course or one of the mathematics courses excluding Computer Science 797, 798, 799A. A 600-level electrical engineering course or one of the mathematics courses listed below in the ALC area of study may replace one 600-level computer science course.
2. Students must select Plan A (Thesis) or Plan B (Comprehensive Examinations) as described below. (Selecting Plan A is contingent upon having a minimum 3.5 GPA in courses applicable to the master’s degree, and upon finding a full time computer science faculty member to supervise the thesis. The number of students that can be accommodated in Plan A is limited by faculty resources.)

 Plan A (Thesis)
 (Major Code: 07011) (SIMS Code: 773803)
 A total of 30 units of 500-, 600-, 700-level courses as follows:
 a. At least 15 units from Computer Science 600- and 700-level courses excluding Computer Science 797, 798, 799A. A 600-level electrical engineering course or one of the mathematics courses listed below in the ALC area of study may replace one 600-level computer science course.
 b. Students select two areas of study from the areas listed below, and take at least two courses from each area.
 c. Three units of Thesis (799A), and an oral presentation and defense.
 With approval of the graduate adviser, students may take Computer Science 798 as preparation for Computer Science 799A (Thesis).
Plan B (Comprehensive Examinations)

A total of 30 units of 500-, 600-, 700-level courses as follows:

a. At least 18 units from Computer Science 600- and 700-level courses excluding Computer Science 797, 798, 799A. A 600-level electrical engineering course or one of the mathematics courses listed below in the ALC area of study may replace one 600-level computer science course.

b. At least one course from four of the following five areas of study: PFL, OSA, ALC, ISR, and DSW.

c. Comprehensive examinations in three subjects selected from data structures and algorithms; programming languages; numerical analysis; operating systems and architecture; automata and formal languages; intelligent systems and robotics. Under certain conditions, students may substitute additional coursework for one or two of the three required examinations. Further information is available on the department Web site.

Full-time international students on Plan B who have completed all their required coursework must show progress in at least two areas of study each semester (until they have completed all but one). This can be done by either taking qualifying examinations or additional coursework, which must be preapproved by the graduate adviser.

Areas of Study

(ALC) Algorithms and Complexity: Computer Science 558, 562, 566, 600, 660, 662, 664; Mathematics 525, 625, 626, 667, 668, 693A, 693B.

(ISR) Intelligent Systems and Robotics: Computer Science 550, 552, 553, 556, 559, 581, 582, 652, 653, 656, 657, 682.

Advanced Web and Mobile Applications Development Certificate

(Major Code: 90054) (SIMS Code: 773806)

(Offered through the College of Extended Studies)

The advanced certificate in Web and Mobile Applications Development provides students with the specialized knowledge that is important in the development of Web and mobile computer applications. Students will study and gain experience with the languages and frameworks that are most commonly used in developing these applications, with the design of user interfaces and software systems, and with associated topics such as networking, hosting infrastructure, and security. They will also learn the fundamental principles on which these topics are based, so that they will be prepared for the new technologies that are constantly being developed.

The admission requirement is a bachelor’s degree in computer science or a closely related field. Individuals with an equivalent knowledge of the background materials through work or self-study may be accepted into this program at the discretion of the program director.

The certificate requires completion of at least four courses (12 units) with the approval of the program adviser selected from Computer Science 545, 546, 547, 545, 646, 648. At least two of the four courses must be at the 600-level.

For more information, contact the Department of Computer Science at http://www.cs.sdsu.edu.

Courses Acceptable on Master's Degree Program in Computer Science (CS)

Refer to Courses and Curricula and Regulations of the Division of Graduate Affairs sections of this bulletin for explanation of the course numbering system, unit or credit hour, prerequisites, and related information.

UPPER DIVISION COURSES

CS 503. Scientific Database Techniques (3)
Prerequisites: Computer Science 205, 310, and Mathematics 245. Fundamental data models for handling scientific data, including flat file, indexed compressed files, relational databases, and object oriented databases, and their associated query technologies; e.g. file formats, input/output libraries, string searching, structured query language, object-oriented structured query language, hypertext markup language/ common gateway interface, and other specialized interfaces. Designed for computational science students. Computer science majors must obtain adviser approval. See Computer Science 514.

CS 514. Database Theory and Implementation (3)
Prerequisites: Computer Science 310 and Mathematics 245. Database systems architecture. Storage structures and access techniques. Relational model, relational algebra and calculus, normalization of relations, hierarchical and network models. Current database systems.

CS 520. Advanced Programming Languages (3)
Prerequisites: Computer Science 237, 310, and 320. Object oriented programming, concurrent programming, logic programming. Implementation issues.

CS 524. Compiler Construction (3)

CS 530. Systems Programming (3)
Prerequisites: Computer Science 237 and 310. Design and implementation of system software. Relationship between software design and machine architecture. Topics from assemblers, loaders and linkers, macro processors, compilers, debuggers, editors. Introduction to software engineering and review of programming fundamentals and object oriented concepts. Large project in object oriented programming is required. Not acceptable for the M.S. degree in computer science.

CS 532. Software Engineering (3)
Prerequisites: Computer Science 320 and 530. Theory and methodology of programming complex computer software. Analysis, design, and implementation of programs. Team projects required.

CS 534. Software Measurement (3)
Prerequisite: Computer Science 532. Basics of software measurement and use of measurement information to ensure quality software and determine software process effectiveness. Software estimation, cost estimation models, definition of various measures, tools to support measurement collection and analysis, analysis techniques, and case studies.

CS 535. Object-Oriented Programming and Design (3)
Prerequisites: Computer Science 310 and 320. Basic concepts of object-oriented programming; classes, objects, messages, data abstraction, inheritance, encapsulation. Object-oriented design methodology.

CS 537. Programming for GIS (3)
Prerequisite: Computer Science 310 or Geography 484. Customization of Geographic Information Science application development platforms with emphasis on object oriented programming and component architecture. Prominent examples are Map Objects with Visual Basic, Map Objects with Java. Considerable programming effort required, especially in Graphical User Interface development.
CS 540. Software Internationalization (3)
Prerequisite: Computer Science 310.
Principles, techniques, and resources for design and implementa-
tion of software localizable to multiple languages and/or cultures,
including detailed examination of internationalization features provided
by one or more widely used modern programming languages.

CS 541. Online Documentation and Help Systems (3)
Prerequisite: Computer Science 310.
Design, implementation, and maintenance of online documenta-
tion and help systems, including authoring principles and standards;
theory and practice of single-source content management; survey of
available development tools and resources; internationalization; and
project management.

CS 542. XML for Multilingual and Multicultural Applications (3)
Prerequisite: Computer Science 310.
Principles, techniques, and resources for designing and utilizing
globalized XML documents in multilingual and multicultural informa-
tion systems.

CS 545. Introduction to Web Application Development (3)
(Offered only in Extension)
Prerequisite: Computer Science 310.
World Wide Web application development. XHTML, CSS, Javascript,
client-side and server-side scripting, PHP and CGI program-
ning with Perl. Application integration with SQL database
systems.

CS 546. Human Computer Interfaces (3)
(Offered only in Extension)
Prerequisites: Computer Science 310 and 320.
Common interface idioms and support available for loose integra-
tion into aesthetically appealing and practical, efficient interaction
between humans and machine. Editors, browsers, games, networking
sites, posting boards, etc. Principles that are ubiquitous among tools
for HCI development.

CS 547. Programming and Scripting Languages for Web
Applications (3)
(Offered only in Extension)
Prerequisites: Computer Science 310 and 320.
Principles and practice of dynamic and scripting and functional
languages used in web applications. Basic language concepts, data
structures in dynamic languages, code structure, code quality, test-
ing, string manipulation, dynamic code generation.

CS 550. Artificial Intelligence (3)
Prerequisites: Computer Science 108 and either Mathematics 245
or 521A.
Heuristic approaches to problem solving. Systematic methods of
search of the problem state space. Theorem proving by machine. Res-
solution principle and its applications.

CS 551. User Interface Environments (3)
Prerequisites: Computer Science 310 and 320.
Design of user-machine interfaces in interactive systems. Problems
faced by user of an interactive system; basic issues and principles
involved in design and implementation of good and friendly
user-machine graphical interfaces.

CS 552. Artificial Intelligence II (3)
Prerequisite: Computer Science 550.
Limitations of symbol-based approach to artificial intelligence from
Computer Science 550. Presented alternatives are genetic and proba-
bilistic approaches, connectionist and emergent representation and
learning, natural language processing, intelligence measures and
cognitive models. Seminal publications shaping these techniques.

CS 553. Neural Networks (3)
Prerequisites: Computer Science 320 and Mathematics 254.
Principles of neural networks, their theory and applications.

CS 556. Robotics: Mathematics, Programming, and Control (3)
Prerequisites: Computer Science 320 and Mathematics 254, knowl-
edge of the C programming language.
Robotic systems including manipulators, actuators, sensors, and
controllers. Kinematics of planar robots. Design and implementa-
tion of robot joint controllers. Robot programming languages and environ-
ments, and robot command interfaces.

CS 558. Computer Simulation (3)
Prerequisites: Computer Science 310 and Statistics 550.
Methodology of simulation for discrete and continuous dynamic
systems. State-of-the-art programming techniques and languages.
Statistical aspects of simulation. Students will design, program, exe-
cute, and document a simulation of their choice.

CS 559. Computer Vision (3)
Prerequisites: Computer Science 310 and Mathematics 254.
Algorithms and computer methods for processing of images.
Visual perception as a computational problem, image formation, char-
acterization of images, feature extraction, regional and edge
detection, computer architectures for machine vision.

CS 560. Algorithms and Their Analysis (3)
Prerequisite: Computer Science 310.
Algorithms for solving frequently occurring problems. Analysis
techniques and solutions to recurrence relations. Searching and sort-
ing algorithms. Graph problems (shortest paths, minimal spanning
trees, graph search, etc.). NP complete problems. Not acceptable for
the M.S. degree in Computer Science.

CS 562. Automata Theory (3)
Prerequisite: Mathematics 245 or 521A.
Definition of finite automata. Classification of finite automaton
definable languages. Minimization of finite automata. Nondeterminis-
tic finite automata. Sequential machines with output. Regular sets and
expressions. Introduction to grammars.

CS 570. Operating Systems (3)
Prerequisites: Computer Science 310, 370, and knowledge of the
C programming language.
File systems, processes, CPU scheduling, concurrent program-
ning, memory management, protection. Relationship between the
operating system and underlying architecture. Not acceptable for the
M.S. degree in Computer Science.

CS 572. Microprocessor Architecture (3)
Prerequisites: Computer Science 370 and knowledge of the C pro-
gramming language.
Architecture of state-of-the-art microprocessor. Internal pipeline,
internal cache, external cache, and memory management. Program-
ing a uniprocessor. Communication among computers in a
distributed environment. Architecture and programming of a multipro-
cessor system.

CS 574. Computer Security (3)
Prerequisites: Computer Science 310; Mathematics 245; Statistics
550; and credit or concurrent registration in Computer Science 570.
Principles of computer security and application of principles to
operating systems, database systems, and computer networks. Top-
ics include encryption techniques, access controls, and information
flow controls.

CS 576. Computer Networks and Distributed Systems (3)
Prerequisite: Credit or concurrent registration in Computer Science
570.
Basic networking concepts such as seven-layer reference model,
transmission media, addressing, subnetting and supernetting, net-
working devices, LANs and WANs, internetworking, distributed
processing, and client-server model. Basic concepts and protocols of
TCP/IP protocol suite and basic Internet services.

CS 580. Client-Server Programming (3)
Prerequisites: Computer Science 570 and knowledge of an object-ori-
ented programming language. Recommended: Computer Science 576.
Client-server model, networking protocols for client-server pro-
grams, algorithmic issues in client-server programs, client-server
protocols, implementing client-server applications.

CS 581. Computational Linguistics (3)
(Same course as Linguistics 581)
Prerequisites: Computer Science 320 or Linguistics 571; Linguis-
tics 570 or Mathematics 245.
Basic concepts in computational linguistics including regular
expressions, finite-state automata, finite-state transducers, weighted
finite-state automata, and n-gram language models. Applications to
phonology, orthography, morphology, syntax, Probabilistic models.
Statistical techniques for speech recognition.
CS 582. Introduction to Speech Processing (3)
Prerequisite: Computer Science 310.

CS 583. 3D Game Programming (3)
Prerequisite: Computer Science 310 or equivalent programming background.
Development of programming skills using software environment of a game engine and its scripting language. 3D concepts for game play, modeling, and programming. Roles needed in software development team. Contrast creation of original 3D object models for game world with incorporation of pre-created generic models.

CS 596. Advanced Topics in Computer Science (1-4)
Prerequisite: Consent of instructor.
Selected topics in computer science. May be repeated with approval of the instructor. See Class Schedule for specific content. Limit of nine units of any combination of 296, 496, 596 courses applicable to a bachelor’s degree. Maximum credit of six units of 596 applicable to a bachelor’s degree. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

GRADUATE COURSES
NOTE: Classified graduate standing is expected for all graduate courses.

CS 600. Methods in Bioinformatics, Medical Informatics, and Cheminformatics (3)
(Same course as Bioinformatics and Medical Informatics 600)
Prerequisites: Three units of calculus and graduate standing. Computer, mathematical, and engineering techniques for bioinformatics, cheminformatics, and medical informatics. Techniques used in microarray data analysis, gene and protein sequence alignment, and classification techniques in medical decision making.

CS 605. Scientific Computing (3)
(Same course as Computational Science 605)
Prerequisites: Graduate standing and knowledge of the C programming language or FORTRAN or Computational Science 526.
Parallel programming using message passing to include high performance computing and MPI language extensions. (Formerly numbered Computer Science 505.)

CS 615. Spatial Database (3)
Prerequisite: Computer Science 514. Recommended: Computer Science 560.
Strategies for databases in which locations are prominent. Access strategies such as quadtrees and R-trees. Topological and other spatial extensions to query languages. Spatial models like non-intersection. Oracle spatial features. Object and object-oriented databases.

CS 620. Formal Languages and Syntactic Analysis I (3)
Prerequisites: Computer Science 310, 320 or 520, and 562.
Regular, context-free, context-sensitive, and general grammars. Corresponding machine model recognizers. Chomsky and Greibach normal forms. Closure, decidability and undecidability properties. (Formerly numbered Computer Science 620A.)

CS 635. Advanced Object-Oriented Design and Programming (3)
Prerequisites: Computer Science 535 and knowledge of an object-oriented programming language.
Advanced topics in object-oriented programming and design, code reuse, building class libraries, quality of objects, coupling, cohesion, design patterns, distributed objects.

CS 636. Management of Software Development (3)
Prerequisite: Computer Science 532 or 535.
Managing software projects. Modern software management process models. Project planning, cost estimation, tracking and control, staffing, risk management, and software process improvement.

CS 645. Advanced Web Application Development (3)
(Offered only in Extension)
Prerequisite: Computer Science 545.
XHTML, CSS, JavaScript, client-side and server-side scripting, Java servlets, JSP. Frameworks. Server systems and development tools appropriate for large, complex project. SQL database via JDBC.

CS 646. Mobile Application Development (3)
(Offered only in Extension)
Prerequisite: Computer Science 560.
Design and implementation of applications for smart mobile phones and mobile devices. May be repeated with new content. See Class Schedule for specific content. Maximum credit six units applicable to a master’s degree.

CS 648. Advanced Topics in Web and Mobile Applications (3)
(Offered only in Extension)
Prerequisite: Computer Science 545.
Advanced technologies, issues, and concepts in Web and mobile software development. May be repeated with new content. See Class Schedule for specific content. Maximum credit six units applicable to a master’s degree.

CS 650. Seminar in Artificial Intelligence (3)
Prerequisites: Computer Science 550.
General problem-solving programs, expert problem solving, game-playing programs, pattern recognition and natural language processing. Understanding vision, manipulation, computer decision. May be repeated with new content with approval of graduate adviser. Maximum credit six units applicable to a master’s degree.

CS 652. Emergent and Adaptive Computation (3)
Prerequisite: Computer Science 550 or 552.
Computational models based on complex systems. Distributed approaches to adaptation. Emergence of collective behavior. Population-based techniques including swarm optimization, ant colony algorithms and cellular-automata. Intrusion detection and other applications of artificial immune systems. Classifier systems, evolutionary computation and other adaptive frameworks.

CS 653. Data Mining and Knowledge Discovery (3)
Prerequisite: Computer Science 320.
Foundations of data mining and knowledge discovery. Diverse methods, algorithms, design techniques and application practice including statistical and Bayesian methods, pattern recognition, clustering, knowledge discovery in data sets, machine learning, neural networks, rough and fuzzy sets.

CS 656. Advanced Robotics (3)
Prerequisite: Computer Science 556.
Computer-based techniques for low-, medium-, and high-level robot control including sequential and parallel schemes for robot dynamics, robot programming and robot task planning.

CS 657. Intelligent Systems and Control (3)
Prerequisites: Computer Science 535 and 560 or Computer Science 530.
Genetic and evolutionary algorithms, genetic programming and applications, fuzzy logic and approximate reasoning, rule-based inference engines, intelligent path planning and applications to robotics, dynamic systems and their simulations using Simulink, conventional control and intelligent control, intelligent agents, autonomous and multi-agent systems.

CS 660. Combinatorial Algorithms and Data Structures (3)
Prerequisite: Computer Science 560.
Algorithm design techniques. Network flow and matching. Complexity analysis. NP-completeness, reductions among NP-complete problems. Approximation algorithms for NP-complete problems such as the traveling salesman problem.

CS 661. Geometric Algorithms (3)
Prerequisite: Computer Science 560.
Modern algorithmic solutions to problems where spatial data structures are relevant. Convex hulls, segment intersections, polygon triangulation, orthogonal range searching, trapezoidal decomposition, Voronoi diagrams, Delaunay triangulations. 3D for computer graphics, GIS, robotics, etc.
CS 662. Theory of Parallel Algorithms (3)
Prerequisites: Computer Science 560 and Mathematics 254.

CS 664. Theory of Computability (3)
Prerequisite: Computer Science 562.
Turing machines and other formal models of computation. Recursive function theory. The Ackermann function. Solvable and unsolvable problems.

CS 670. Advanced Operating Systems (3)
Prerequisite: Computer Science 570.
Survey of advanced operating systems including distributed systems. Associated design issues. Case studies.

CS 682. Speech Processing (3)
Prerequisites: Graduate standing, Computer Science 310, Mathematics 254, Statistics 551A.
Algorithms and methods for processing of speech. Feature extraction, human speech production and perception, pattern recognition for acoustic and language modeling as applied to automatic speech and speaker recognition.

CS 683. Emerging Technologies (3)
Prerequisites: See Class Schedule for prerequisites.
Emerging technologies in computing. Issues and concepts underlying new technology. Hands on experience. May be repeated with new content. See Class Schedule for specific content. Maximum credit six units applicable to a master’s degree.

CS 689. Scientific Visualization (3)
Prerequisite: Mathematics 254.
Cognitive principles governing effective design and analysis of data representations, design strategies for enhancing dimensionality and information density of visual portrayals of information; survey of and practice in use of available software tools for visualization.

CS 696. Selected Topics in Computer Science (3)
Prerequisite: Consent of instructor.
Intensive study in specific areas of computer science. May be repeated with new content. See Class Schedule for specific content. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

CS 790. Practicum in Teaching of Computer Science (1) Cr/NC
Prerequisite: Award of graduate teaching associateship in computer science.
Supervision in teaching computer science. Lecture writing, style of lecture presentation and alternatives, test and syllabus construction, and grading system. Not applicable to an advanced degree. Required for first semester GTA’s.

CS 797. Research (1-3) Cr/NC/RP
Prerequisite: Six units of graduate level computer science courses. Research in computer science. Maximum credit six units applicable to a master’s degree.

CS 798. Special Study (1-3) Cr/NC/RP
Prerequisite: Consent of staff; to be arranged with department chair and instructor.
Individual study. Maximum credit six units applicable to a master’s degree.

CS 799A. Thesis or Project (3) Cr/NC/RP
Prerequisites: An officially appointed thesis committee and advancement to candidacy.
Preparation of a project or thesis for the master’s degree.

CS 799B. Thesis or Project Extension (0) Cr/NC
Prerequisite: Prior registration in Thesis or Project 799A with an assigned grade symbol of RP.
Registration required in any semester or term following assignment of RP in Course 799A in which the student expects to use the facilities and resources of the university; also student must be registered in the course when the completed thesis or project is granted final approval.

CS 799C. Comprehensive Examination Extension (0) Cr/NC
Prerequisite: Completion or concurrent enrollment in degree program courses.
Registration required of students whose only requirement is completion of the comprehensive examination for the master’s degree. Registration in 799C limited to two semesters.

For additional courses useful to computer scientists, see:
- Mathematics 523. Mathematical Logic
- Mathematics 541. Introduction to Numerical Analysis and Computing
- Mathematics 542. Introduction to Numerical Solutions of Differential Equations
- Mathematics 561. Applied Graph Theory

Counseling and School Psychology

Refer to “Education” in this section of the bulletin.