Civil, Construction, and Environmental Engineering

In the College of Engineering

OFFICE: Engineering 424
TELEPHONE: 619-594-6071
E-MAIL: ce@engineering.sdsu.edu

Faculty
Kenneth D. Walsh, Ph.D., P.E., Professor of Civil, Construction, and Environmental Engineering, The AGC Paul S. Roel Chair in Construction Engineering and Management, Chair of Department
M. Ziad Bayasi, Ph.D., P.E., Professor of Civil, Construction, and Environmental Engineering
David T. Hayhurst, Ph.D., Professor of Civil, Construction, and Environmental Engineering and Dean of the College of Engineering
Victor M. Ponce, Ph.D., Professor of Civil, Construction, and Environmental Engineering
Janusz C. Supernak, Ph.D., Professor of Civil, Construction, and Environmental Engineering
Bruce D. Westermo, Ph.D., Professor of Civil, Construction, and Environmental Engineering
Fatih Buyuksonmez, Ph.D., P.E., Associate Professor of Civil, Construction, and Environmental Engineering, The William E. Leonhard, Jr. Chair in Environmental Engineering
Julio R. Valdes, Ph.D., P.E., Associate Professor of Civil, Construction, and Environmental Engineering
Thais Alves, Ph.D., Assistant Professor of Civil, Construction, and Environmental Engineering
Robert K. Dowell, Ph.D., Assistant Professor of Civil, Construction, and Environmental Engineering
Temesgen Garoma Ararsso, Ph.D., P.E., Assistant Professor of Civil, Construction, and Environmental Engineering (Graduate Adviser)
Tyler S. Radniecki, Ph.D., Assistant Professor of Civil, Construction, and Environmental Engineering, The William E. Leonhard, Jr. Chair in Civil, Construction, and Environmental Engineering

Adjunct Faculty
Kenneth G. Eggert, Ph.D., Civil, Construction, and Environmental Engineering
Claude Michel Penchina, Ph.D., Civil, Construction, and Environmental Engineering
Jong Pil Won, Ph.D., Civil, Construction, and Environmental Engineering

The Associated General Contractors (AGC) Paul S. Roel Chair in Construction Engineering and Management

The AGC Paul S. Roel Chair in Construction Engineering and Management is funded with an endowment established by generous gifts from members of the Associated General Contractors in San Diego Chapter. Recognizing the need for expert construction professionals, the local construction community has invested considerable resources in this new degree program. In particular, the endowment is funded by a significant gift from Roel Construction, in honor of Paul S. Roel, the son of the company’s founder and the man responsible for moving the family business to San Diego in 1959. The first appointee to the Chair, Dr. Kenneth D. Walsh, is an accomplished teacher-scholar, with a research background in improvement of production systems in construction in residential, commercial, and heavy civil settings.

The Blasker Chair in Environmental Engineering

The Blasker Chair in Environmental Engineering was established by an endowment from the Blasker-Rose-Miah Endowment Fund of the San Diego Foundation. The fund was created in honor of Mr. Samuel Blasker who left $8.0 million to the San Diego Foundation. Mr. Blasker was a successful aeronautical engineer and a business man with a vision to nurture and develop unique and innovative discoveries and experiences which may be of benefit to humanity. The Blasker Chair is intended to promote excellence in environmental engineering.

The William E. Leonhard, Jr. Chair in Civil, Construction, and Environmental Engineering

The William E. Leonhard, Jr. Chair in Civil, Construction, and Environmental Engineering is funded with an endowment created by generous gifts from William G. Leonhard, Jr. and his parents, William E. and Wyllis M. Leonhard. After Bill Leonhard graduated from San Diego State in 1964, he entered a career in the Air Force, rising to the rank of colonel. In January 1990, he retired from the Air Force, spent the next several years in private industry, and retired again in 1998. The Leonhard Chair is intended to promote excellence in undergraduate education in civil, construction, and environmental engineering.

Courses Acceptable on Master’s Degree Programs in Civil, Construction, and Environmental Engineering (CIV E) (CON E) (ENV E)

Refer to Courses and Curricula and Regulations of the Division of Graduate Affairs sections of this bulletin for explanation of the course numbering system, unit or credit hour, prerequisites, and related information.

NOTE: Proof of completion of prerequisites (copy of transcript) is required for all courses which list prerequisites.

Civil Engineering (CIV E)

UPPER DIVISION COURSES

CIV E 521. Structural Analysis II (3)
Prerequisite: Civil Engineering 321.

CIV E 523. Design of Light Framed Structures (3)
Prerequisite: Civil Engineering 321.
Material properties for wood and metal studs. Loads and structural forces for buildings. Design of beams, columns, bearing stud walls. Seismic forces and lateral force resisting systems. Roof, floor, and shear wall design. Composite beams. (Formerly numbered Civil Engineering 423.)
CIV E 525. Design of Steel Structures (3)
Prerequisite: Civil Engineering 321.
Mechanical behavior of structural steel. Design of steel beams, girders, columns and members subjected to combined stresses. Design of various types of connections of steel structures; plate girders, continuous beams and rigid frames.

CIV E 528. Masonry Structures Design (3)
Prerequisite: Civil Engineering 321.
Analysis and design of masonry beams, retaining walls, shear walls, bearing walls, and columns. Use of allowable stress and strength design methods. Design project, including structural system analysis and lateral design of masonry buildings.

CIV E 530. Open Channel Hydraulics (3)
Two lectures and three hours of laboratory.
Prerequisite: Civil Engineering 444.

CIV E 580. Traffic Engineering Design (3)
Prerequisite: Civil Engineering 481.
Sizing and configuration of highway facilities based on capacity analysis. Traffic signal design, impact and mitigation studies, parking, safety design.

CIV E 596. Advanced Civil Engineering Topics (1-3)
Prerequisite: Consent of instructor.
Modern developments in civil engineering. May be repeated with new content. See Class Schedule for specific content. Maximum credit of six units for any combination of Civil Engineering 496, 499 and 596 applicable to a bachelor’s degree. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

ENV E 554. Process Fundamentals of Environmental Systems (3)
Equilibrium and kinetics of chemical and biological reactions of environmental systems. Considerations of mass-transfer and fluid dynamics in water quality management and air pollution control.

ENV E 556. Air Pollution Engineering (3)
Prerequisites: Senior standing and Environmental Engineering 355.

ENV E 558. Solid and Hazardous Waste Engineering (3)
Prerequisites: Senior standing and Environmental Engineering 355.
Municipal solid and hazardous solid wastes from an environmental engineering perspective, including waste minimization and recycling. Engineered volume reduction through composting, incineration, mechanical compaction, and other methods. Ultimate disposal, landfill design and legislative regulations.

ENV E 563. Process and Instrumentation Laboratory (3)
One lecture and six hours of laboratory.
Prerequisites: Environmental Engineering 363 and credit or concurrent registration in Environmental Engineering 554.
Design of experiment; run selected unit operations and processes of environmental engineering on bench-scale; use of high-end analytical instruments; collection, analysis and interpretation of data.

ENV E 596. Advanced Environmental Engineering Topics (1-3)
Prerequisite: Consent of instructor.
Modern developments in environmental engineering. May be repeated with new content. See Class Schedule for specific content. Maximum credit of six units for any combination of Environmental Engineering 496, 499 and 596 applicable to a bachelor’s degree. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

Civil Engineering (CIV E) GRADUATE COURSES

CIV E 605. Prestressed Concrete Structures (3)
Prerequisite: Civil Engineering 421 with minimum grade of C.
Fundamental concepts of prestressed concrete theory. Design applications to various types of structures.

CIV E 607. Dynamics of Structures (3)
Prerequisite: Civil Engineering 521 with minimum grade of C.
Dynamic disturbances, structures with variable degelastic beams; continuous beams, rigid frames, floor systems. Energy methods in structural dynamics.

CIV E 608. Earthquake Engineering (3)
Prerequisite: Civil Engineering 607.
Elements of seismology. Methods of analysis for earthquake loads. Procedures and code provisions for the design of earthquake-resistant structures.

CIV E 610. Finite Element Analysis of Structures (3)
Prerequisite: Civil Engineering 521 with minimum grade of C.
General procedure, various types of finite elements; analysis and design of isotropic and orthotropic plates and shells, deep beams, and shear walls using finite element technique; use of digital computers for solutions. Application to civil engineering structures.

CIV E 612. Advanced Concrete Materials (3)
Two lectures and three hours of laboratory.
Prerequisite: Civil Engineering 421.

CIV E 620. Traffic Flow and Control (3)
Prerequisite: Civil Engineering 481 or City Planning 625 or Geography 559, with minimum grade of C.
Advanced treatment of traffic flow and control issues. Highway capacity and traffic flow characteristics, traffic flow modeling, intersection control, freeway control systems, intelligent transportation systems.

CIV E 621. Transportation Demand Analysis (3)
Prerequisite: Civil Engineering 481 or Geography 559 or City Planning 625, with minimum grade of C.
Travel demand modeling with emphasis on application to growing metropolitan areas; four-step travel demand forecasting; disaggregate, behavioral, and activity-based approaches; recent methodological developments; transportation-land use interactions.

CIV E 622. Mass Transit Engineering (3)
Prerequisite: Civil Engineering 481 or City Planning 625 or Geography 559, with minimum grade of C.
Transit system characteristics, analysis of demand for transit services, transit system planning, scheduling, analysis and design.

CIV E 631. Spatial Hydrology (3)
Prerequisite: Civil Engineering 444.
Integration of spatial data analysis and hydrologic modeling. Quantification of spatially distributed hydrologic characteristics. Decomposition of drainage network systems to support quasi-distributed hydrologic modeling. Quantification of hydrologic impacts due to model resolution, altered land use conditions, and modeling techniques.
Civil, Construction, and Environmental Engineering

CIV E 632. Computational Hydraulics and Hydrology (3)
Prerequisites: Civil Engineering 445 and 530.

CIV E 633. Environmental Hydrology (3)
Prerequisites: Civil Engineering 445 and Environmental Engineering 355.
Hysosphere function, hydroclimatology, hydrographic characteristics, desertification, hydroecology, salinity modeling and management, stream and lake restoration, and case studies.

CIV E 634. Surface Water Hydrology (3)
Prerequisite: Civil Engineering 444.

CIV E 635. Small Catchment Erosion (3)
Prerequisite: Civil Engineering 444 with minimum grade of C.

CIV E 638. Sedimentation and River Engineering (3)
Prerequisite: Civil Engineering 444 with minimum grade of C.
Behavior of soil and soil-structure systems under dynamic loading. Applications include dynamic earth bearing capacity and pressure, soil spring constants for machine foundation design, liquefaction analysis, site response spectra, and seismic stability of slopes. Case histories discussed.

CIV E 636. Advanced Topics in Civil Engineering (2-3)
Intensive study in specific areas of civil engineering. May be repeated with new content. See Class Schedule for specific content. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

CIV E 639. Seminar in Transportation Engineering (2-3)
Prerequisites: Minimum grade point average of 3.0 and consent of instructor.
An intensive study in transportation engineering. Maximum credit six units applicable to a master’s degree.

CIV E 644. Soil Dynamics (3)
Prerequisites: Civil Engineering 462 and 463 with minimum grades of C.
Advanced theories of soil mechanics applied to geotechnical and environmental engineering. Classification of terrestrial and marine soils, compaction, consolidation, expansion, stress distribution, strength, permeability and seepage, site improvement, and remediation.

CIV E 640. Advanced Soil Mechanics (3)
Prerequisites: Civil Engineering 462 and 463 with minimum grades of C.
Advanced theories of soil bearing capacity, settlement, and stress distribution applied to design of shallow and deep foundations and earth retaining structures. Subsurface exploration and dewatering methods.

CIV E 641. Advanced Foundation Engineering (3)
Prerequisites: Civil Engineering 462 and 463 with minimum grades of C.
Advanced theories of soil bearing capacity, settlement, and stress distribution applied to design of shallow and deep foundations and earth retaining structures. Subsurface exploration and dewatering methods.

CIV E 642. Groundwater Seepage and Earth Dams (3)
Prerequisites: Civil Engineering 462 and 463 with minimum grades of C.

CIV E 644. Soil Dynamics (3)
Prerequisites: Civil Engineering 462 and 463 with a minimum grade of C.
Behavior of soil and soil-structure systems under dynamic loading. Applications include dynamic earth bearing capacity and pressure, soil spring constants for machine foundation design, liquefaction analysis, site response spectra, and seismic stability of slopes. Case histories discussed.

CIV E 696. Advanced Topics in Civil Engineering (2-3)
Intensive study in specific areas of civil engineering. May be repeated with new content. See Class Schedule for specific content. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

CIV E 781. Seminar in Transportation Engineering (2-3)
Prerequisites: Minimum grade point average of 3.0 and consent of instructor.
An intensive study in transportation engineering. Maximum credit six units applicable to a master’s degree.

CIV E 797. Independent Research (1-3) Cr/NC/RP
Prerequisite: Consent of graduate adviser.
Independent research in civil and environmental engineering. Maximum credit three units applicable to a master’s degree.

CIV E 798. Special Study (1-3) Cr/NC/RP
Prerequisite: Consent of staff; to be arranged with department chair and instructor.
Individual study. Maximum credit three units applicable to a master’s degree.

CIV E 799A. Thesis or Project (3) Cr/NC/RP
Prerequisites: An officially appointed thesis committee and advancement to candidacy.
Preparation of a project or thesis for the master’s degree.

CIV E 799B. Thesis or Project Extension (0) Cr/NC
Prerequisite: Prior registration in Thesis or Project 799A with an assigned grade symbol of RP.
Registration required in any semester or term following assignment of RP in Course 799A in which the student expects to use the facilities and resources of the university; also student must be registered in the course when the completed thesis or project is granted final approval.

CIV E 799C. Comprehensive Examination Extension (0) Cr/NC
Prerequisite: Completion or concurrent enrollment in degree program courses.
Registration required of students whose only requirement is completion of the comprehensive examination for the master’s degree. Registration in 799C limited to two semesters.

Construction Engineering (CON E)
GRADUATE COURSES

CON E 650. Construction Labor Productivity (3)
Prerequisites: Construction Engineering 301 and 401.
Definition of productivity measures and factors that affect productivity of construction labor. Quantification techniques of labor productivity in construction.

CON E 651. Project Production System Design in Construction (3)
Prerequisites: Construction Engineering 650 or Construction Engineering 310, 401, and 490.
Theory of project production system design. Relation to production management theories, productivity improvement techniques, data gathering techniques to support process evaluation. Civil design and construction operations but also applicable to other industries.

CON E 652. Construction Operations Modeling and Technology (3)
Prerequisites: Construction Engineering 310, 401, 651, and Civil Engineering 220.
Modelling and optimizing construction projects and constructed works. Abstraction of projects, process mapping, and activity quantification. Theories of queuing and batching. Numerico-physical modeling of construction operations in time and space. Systems integration.

CON E 653. Construction Scheduling (3)
Prerequisites: Construction Engineering 301 and 401.
Construction planning, scheduling and evaluation of planning techniques, labor, and equipment leveling, expecting cost and crashing, resource loading, what if scenarios, and use of scheduling in delay analysis.

CON E 654. Construction Claims (3)
Prerequisite: Construction Engineering 301.
Basic foundations construction claims process starting with an understanding of contractual basis for construction claims through final resolution of claims. Clauses that form the basis for claims; recognition of claims, communicating claims elements, pricing claims, and methods for resolving claims.
Civil, Construction, and Environmental Engineering

CON E 655. Project Design and Portfolio Management (3)
Prerequisites: Construction Engineering 651 or Civil Engineering 495; and Environmental Engineering 320 or 355.
Techniques for project selection, definition, design management and value generation, including consideration of ROI, feasibility, and portfolio diversification. Incorporation of life-cycle considerations into all levels of design, including concepts of sustainability. Owner, designer, and contractor perspectives.

Environmental Engineering (ENV E) GRADUATE COURSES

ENV E 637. Process Design for Industrial and Hazardous Waste Treatment (3)
Prerequisites: Environmental Engineering 647 and 648.
Process design of physical, chemical, and biological methods for treatment of hazardous and industrial waste.

ENV E 645. Aquatic Chemistry for Environmental Engineers (3)
Prerequisite: Graduate standing.

ENV E 646. Microbiological Principles of Environmental Engineering (3)
Prerequisite: Graduate standing.
Relationships and significance of microorganisms to organic matter decomposition, mineral transformations, and environmental quality. Applied study in natural (water, sediments, wetlands) and disturbed ecosystems (landfills, contaminated sediments, and groundwater).

ENV E 647. Physical and Chemical Processes of Water Pollution Control (3)
Prerequisites: Environmental Engineering 554 and 645.
Engineering principles and design of physical and chemical processes used in water and wastewater treatment.

ENV E 648. Biological Processes and Bioremediation Engineering (3)
Prerequisites: Environmental Engineering 554 and 646.
Engineering principles and design of biological processes used in wastewater and bioremediation treatment technologies.

ENV E 696. Advanced Topics in Environmental Engineering (2-3)
Intensive study in specific areas of environmental engineering. May be repeated with new content. See Class Schedule for specific content. Credit for 596 and 696 applicable to a master's degree.

ENV E 797. Independent Research (1-3) Cr/NC/RP
Prerequisite: Consent of graduate adviser.
Independent research in civil and environmental engineering. Maximum credit three units applicable to a master's degree.

ENV E 798. Special Study (1-3) Cr/NC/RP
Prerequisite: Consent of staff; to be arranged with department chair and instructor.
Individual study. Maximum credit three units applicable to a master's degree.

ENV E 799A. Thesis or Project (3) Cr/NC/RP
Prerequisites: An officially appointed thesis committee and advancement to candidacy. Preparation of a project or thesis for the master's degree.

ENV E 799B. Thesis or Project Extension (0) Cr/NC
Prerequisite: Prior registration in Thesis or Project 799A with an assigned grade symbol of RP.
Registration required in any semester or term following assignment of RP in Course 799A in which the student expects to use the facilities and resources of the university; also student must be registered in the course when the completed thesis or project is granted final approval.

ENV E 799C. Comprehensive Examination Extension (0) Cr/NC
Prerequisite: Completion or concurrent enrollment in degree program courses.
Registration required of students whose only requirement is completion of the comprehensive examination for the master's degree. Registration in 799C limited to two semesters.