Astronomy
In the College of Sciences

OFFICE: Physics 131
TELEPHONE: 619-594-6182 / FAX: 619-594-1413
E-MAIL: astro@sciences.sdsu.edu
http://mintaka.sdsu.edu

Faculty
Allen W. Shafter, Ph.D., Professor of Astronomy, Chair of Department
Jerome A. Orosz, Ph.D., Professor of Astronomy (Graduate Adviser)
Eric L. Sandquist, Ph.D., Professor of Astronomy
William F. Welsh, Ph.D., Professor of Astronomy
Douglas C. Leonard, Ph.D., Associate Professor of Astronomy
Robert W. Leach, Ph.D., Resident Astronomer

Associateships
Graduate teaching associateships in astronomy are available to a few qualified students. A limited number of graduate research assistantships are also available from the department or through faculty with funded research projects. Application for teaching associate or graduate research positions is done as part of the student’s application for Admission to Graduate Study.

General Information
The Department of Astronomy offers graduate study leading to the Master of Science degree in astronomy. The degree is designed to prepare students either for further graduate work leading to the doctorate, or for a professional career in teaching or in industry.

San Diego State University operates the Mount Laguna Observatory, which is located 45 road miles east of the campus at an elevation of 6100 feet. The research telescopes at the observatory include three reflectors with apertures of 40 (two) and 24 inches. One 40-inch telescope is operated jointly with the University of Illinois and the other with the University of Kansas. Equipment for the telescopes includes CCD and Near-IR cameras for direct imaging, CCD spectrographs, and photoelectric photometers. A dormitory for observers and a shop-laboratory building complete the main research facilities at the observatory. Additionally, each dome has dedicated PCs and/or UNIX workstations for telescope control, data collection, and on-line data reduction. All buildings at the observatory are connected to a fiber-optics, local area network, which in turn is connected to a high speed (45 Mbps) wireless Internet service. Associated with the observatory is the Awona Harrington Visitor Center, which provides facilities for educational programs and for visiting astronomers. The 21-inch Buller reflecting telescope is employed exclusively for education and public outreach programs.

The department also has a strong CCD instrumentation program. Equipment for the telescopes includes three reflectors with apertures of 40 (two) and 24 inches. One 40-inch telescope is operated jointly with the University of Illinois and the other with the University of Kansas. Equipment for the telescopes includes CCD and Near-IR cameras for direct imaging, CCD spectrographs, and photoelectric photometers. A dormitory for observers and a shop-laboratory building complete the main research facilities at the observatory. Additionally, each dome has dedicated PCs and/or UNIX workstations for telescope control, data collection, and on-line data reduction. All buildings at the observatory are connected to a fiber-optics, local area network, which in turn is connected to a high speed (45 Mbps) wireless Internet service. Associated with the observatory is the Awona Harrington Visitor Center, which provides facilities for educational programs and for visiting astronomers. The 21-inch Buller reflecting telescope is employed exclusively for education and public outreach programs.

A main research interest in the department is the study of the structure and evolution of stars derived from the investigation of eclipsing and interacting binary stars. These studies make use of both photometry and spectroscopy at the observatory. Stellar evolution is further studied with photometry of star clusters. The stellar content of nearby galaxies is probed through observations of novae and low-mass x-ray binaries contained within these systems. Galaxies are investigated through surface photometry using direct imaging. The department also has a strong CCD instrumentation program. Graduate students are extensively involved in many of these research programs. Students make use of observatory facilities in support of their thesis research.

Admission to Graduate Study
All students must satisfy the general requirements for admission to the university with classified graduate standing, as described in Part Two of this bulletin. In addition, students must have an overall grade point average of at least 2.5 in the last 60 units of their undergraduate work and must have preparation in astronomy and/or related sciences substantially equivalent to that required for the bachelor’s degree in astronomy at San Diego State University.

Students applying for admission should electronically submit the university application available at http://www.csumentor.edu along with the $55 application fee.

All applicants must submit admissions materials separately to SDSU Graduate Admissions and to the Department of Astronomy.

Graduate Admissions
The following materials should be submitted as a complete package directly to:

Graduate Admissions
Enrollment Services
San Diego State University
San Diego, CA 92182-7416

(1) Official transcripts (in sealed envelopes) from all postsecondary institutions attended;
Note:
• Students who attended SDSU need only submit transcripts for work completed since last attendance.
• Students with international coursework must submit both the official transcript and proof of degree. If documents are in a language other than English, they must be accompanied by a certified English translation.

(2) GRE scores (http://www.ets.org, SDSU institution code 4682);

(3) English language score, if medium of instruction was in a language other than English (http://www.ets.org, SDSU institution code 4682).

Department of Astronomy
The following materials should be mailed or delivered to:
Department of Astronomy
(Attention: Graduate Adviser)
San Diego State University
5500 Campanile Drive
San Diego, CA 92182-1221

(1) Letters of reference (two or three);
(2) Personal statement;
(3) Application for teaching associate position or graduate assistantship (if desired).
Advancement to Candidacy
All students must satisfy the general requirements for advancement to candidacy as specified in Part Four of this bulletin. If the student’s undergraduate preparation is deficient, he/she will be required to take courses for the removal of the deficiency. These courses are in addition to the minimum of 30 units for the master’s degree.

Specific Requirements for the Master of Science Degree

(Major Code: 19111) (SIMS Code: 770501)
In addition to meeting the requirements for classified graduate standing and the basic requirements for the master’s degree as described in Part Four of this bulletin, the student must also meet the following departmental requirements in a 30-unit program:

1. Complete the nine-unit core course curriculum (Astronomy 630, 660, 680).
2. Complete at least 18 additional units of 500-, 600-, 700-level in astronomy graduate level courses or approved 500-level courses in astronomy or related fields as approved by departmental graduate adviser; not to exceed 15 units of 500-level courses if pursuing Plan B.

OR

Plan B: Pass a final comprehensive examination covering the astronomy core curriculum and complete three additional units of graduate level or approved 500-level courses in astronomy or related fields with approval of department graduate adviser.
4. Facility with a scientific computing language is required.

Courses Acceptable on Master’s Degree Program in Astronomy (ASTR)

Refer to Courses and Curricula and Regulations of the Division of Graduate Affairs sections of this bulletin for explanation of the course numbering system, unit or credit hour, prerequisites, and related information.

UPPER DIVISION COURSES

ASTR 510. Exoplanets (3)
Prerequisite: Astronomy 350 and 440, or Physics 350 and 354 with minimum grade of B-, and consent of instructor.
Extrasolar planet detection; mass and radius determination; transits and eclipses; orbital dynamics and transit timing variations; internal and atmospheric characteristics; the exoplanet population and formation scenarios.

ASTR 596. Advanced Topics in Astronomy (2-3)
Prerequisite: Consent of instructor.
Selected topics in astronomy or astrophysics. May be repeated with new content upon approval of instructor. See Class Schedule for specific content. Limit of nine units of any combination of 296, 496, 596 courses applicable to a bachelor's degree. Maximum credit of six units of 596 applicable to a bachelor's degree. Credit for 596 and 696 applicable to a master's degree with approval of the graduate adviser.

GRADUATE COURSES

ASTR 610. Binary Stars (3)
Prerequisite: Astronomy 450.
Visual, spectroscopic, and eclipsing binary stars. Review of observational techniques. Methods of orbital analysis with applications emphasizing determination of fundamental stellar properties, such as mass, radius, temperature, and luminosity. Implications for stellar evolution.

ASTR 620. Galactic Structure (3)
Prerequisite: Astronomy 450.
Survey of basic observational data for determining structure of Milky Way Galaxy. Includes luminosity functions, stellar distributions, solar motion, stellar populations, kinematics and dynamics of general and peculiar stellar motions.

ASTR 630. Stellar Atmospheres and Interiors (3)
Prerequisites: Astronomy 440 and Mathematics 342A.
Gas thermodynamics and equations of state. Production of stellar continuum radiation and spectral lines. Theories of radiative and convective energy transport. Interior structure and evolution of stars.

ASTR 640. Accretion Power and Radiation Processes (3)
Prerequisites: Astronomy 450 and Mathematics 342A.
Accretion processes in astrophysics; compact objects, spherical and disc accretion, interacting binary stars and active galactic nuclei. High energy radiation processes: bremsstrahlung, Compton and inverse Compton scattering and synchrotron emission.

ASTR 660. Galaxies and Cosmology (3)
Prerequisite: Astronomy 450.
Morphology, photometric, and spectroscopic properties, dynamics, and evolution of normal galaxies. Current interpretations of peculiar galaxies and QSO’s. The extragalactic distance scale. Observational cosmology.

ASTR 680. Astronomical Techniques (3)
Prerequisites: Astronomy 350 and 450.
Basic methods of data acquisition and analysis. Emphasis is given to CCD direct imaging, spectroscopy, and photometry. Direct experience with telescopes and instruments at Mount Laguna Observatory, as well as with the department computing and imaging processing facility.

ASTR 790A. Research Paper (3) Cr/NC/RP
Prerequisite: An officially appointed research project committee and advancement to candidacy.
Preparation of a scientific paper, based on original astronomical research, suitable for publication in a refereed astronomical journal.

ASTR 790B. Research Paper Extension (0) Cr/NC
Prerequisite: Prior registration in Astronomy 790A with an assigned grade symbol of RP. Registration required in any semester or term following assignment of RP in Course 790A in which the student expects to use the facilities and resources of the university; also student must be registered in the course when the completed research paper is granted final approval.

ASTR 797. Research (1-3) Cr/NC/RP
Prerequisite: Classified graduate standing.
Research in one of the fields of astronomy. Maximum credit six units applicable to a master’s degree.

ASTR 798. Special Study (1-3) Cr/NC/RP
Prerequisite: Consent of staff; to be arranged with department chair and instructor.
Individual study. Maximum credit six units applicable to a master’s degree.

ASTR 799A. Thesis (3) Cr/NC/RP
Prerequisites: An officially appointed thesis committee and advancement to candidacy.
Preparation of a project or thesis for the master’s degree.

ASTR 799B. Thesis Extension (0) Cr/NC
Prerequisite: Prior registration in Thesis 799A with an assigned grade symbol of RP.
Registration required in any semester or term following assignment of RP in Course 799A in which the student expects to use the facilities and resources of the university; also student must be registered in the course when the completed thesis is granted final approval.