Faculty

R. Lai Tummala, Ph.D., Professor of Electrical and Computer Engineering, Chair of Department
Madhu S. Gupta, Ph.D., Professor of Electrical and Computer Engineering, The Radio Frequency Communication Systems Industry Chair
Fredric J. Harris, Ph.D., P.E., Professor of Electrical and Computer Engineering
Sunil Kumar, Ph.D., Professor of Electrical and Computer Engineering
Paul T. Kolen, Ph.D., Professor of Electrical and Computer Engineering
Yusuf Ozturk, Ph.D., Professor of Electrical and Computer Engineering
Satish Kumar Sharma, Ph.D., Professor of Electrical and Computer Engineering
Andrew Y. J. Szeto, Ph.D., P.E., Professor of Electrical and Computer Engineering
Ashkan Asghari, Ph.D., Associate Professor of Electrical and Computer Engineering
Ramón Betancourt, Ph.D., Associate Professor of Electrical and Computer Engineering
Arif Ege Engin, Ph.D., Associate Professor of Electrical and Computer Engineering
Santosh V. Nagaraj, Ph.D., Associate Professor of Electrical and Computer Engineering
Mahasweta Sarkar, Ph.D., Associate Professor of Electrical and Computer Engineering
Sridhar Seshagiri, Ph.D., Associate Professor of Electrical and Computer Engineering
Ke Huang, Ph.D., Assistant Professor of Electrical and Computer Engineering
Reza Sabzehgar, Ph.D., Assistant Professor of Electrical and Computer Engineering

The Radio Frequency Communication Systems Industry Chair

The Radio Frequency (RF) Communication Systems Industry Chair was established in recognition of the pervasiveness and vital role of radio frequency and wireless communications in modern society, and the emergence of San Diego as the world’s leading center of research and development in the field of telecommunications and wireless engineering. The chair is sustained through generous contributions of Cubic Corporation and other corporations engaged in wireless communication technology. In appreciation of contributions of students trained in the field at SDSU, the RF Communication Systems Industry Chair is intended to promote excellence in education of RF and microwave engineers, and encourage significant professional activities in the field. Dr. Madhu S. Gupta, the first occupant of the chair, maintains a major involvement in professional work in the discipline and has received international recognition from his professional peers as a distinguished educator and scholar in the field of RF and microwave engineering.

Courses Acceptable on Master’s Degree Program in Electrical and Computer Engineering (E E) (COMPE)

Refer to Courses and Curricula and Regulations of the Division of Graduate Affairs sections of this bulletin for explanation of the course numbering system, unit or credit hour, prerequisites, and related information.

Electrical Engineering (E E)

UPPER DIVISION COURSES

NOTE: Prerequisites will be enforced in all 500-level courses. A copy of an official transcript will be accepted as proof. For corequisites, an enrollment confirmation form will be accepted. All courses at the 300 level or below must be passed with a grade of C– or better in order to be used as a prerequisite for any subsequent course with the exception of Electrical Engineering 210, Computer Engineering 160, Mathematics 150, 151, Physics 195, 196, which requires a grade of C or better.

E E 502. Electronic Devices for Rehabilitation (3)
Two lectures and three hours of laboratory.
Prerequisite: Electrical Engineering 330.
Recent developments in electronic assistive devices and microcomputers for persons with various disabilities; assessment of disabled persons for suitable technological assistive devices.

E E 503. Biomedical Instrumentation (3)
Prerequisites: Aerospace Engineering 280; Electrical Engineering 410 and 430 (or for Mechanical Engineering majors, Electrical Engineering 204 and Mechanical Engineering 330). Instrumentation systems to monitor, image, control, and record physiological functions.

E E 530. Analog Integrated Circuit Design (3)
Prerequisite: Electrical Engineering 430 with minimum grade of C-. Advanced treatment of transistor pairs, device mismatches, differential amplifiers, current mirrors, active loads, level shifting, and output stages. Parasitic and distributed device parameters. Economics of IC fabrication and impact on design.

E E 534. Solid-State Devices (3)
Prerequisite: Electrical Engineering 434. Energy bands and charge carriers in semiconductors; generation, recombination, and transport of excess carriers; semiconductor junctions; unipolar and bipolar transistors; high-frequency, high-power, and optoelectronic devices; integrated circuits.

E E 540. Microwave Devices and Systems (3)

E E 540L. Microwave Design and Measurements Laboratory (1)
Three hours of laboratory.
Prerequisites: Credit or concurrent registration in Electrical Engineering 430L and 540.
Microwave measurement equipment, simulation tools for designing microwave components, vector network analyzer calibration, design and measurement of planar microwave components, and a design project.
E E 541. Electro-Optics (3)
Prerequisite: Electrical Engineering 434.
Optical/electronic devices and systems; wave beams; light-matter quantum interactions; incoherent and laser light sources; modulators and detectors. Applications in data transmission, measurement, and materials processing.

E E 556. Digital Signal Processing (3)
Prerequisite: Electrical Engineering 410.
Discrete-time signals and systems. Sampling, Z-transform. Discrete-time Fourier transform and frequency responses, DFT, FFT, and introduction to IIR and FIR digital filter design.

E E 558. Digital Communications (3)
Prerequisite: Electrical Engineering 458.
Design of baseband digital communication systems; noise characterization, sampling, quantization, matched filter receivers, bit-error performance, inter-symbol interference, link budget analysis.

E E 581. Power System Dynamics (3)
Prerequisite: Electrical Engineering 480.
Three-phase faults, symmetrical components, unsymmetrical faults, protective relay operating principles, economic dispatch of thermal power generation units, power system controls, voltage and power stability.

E E 596. Advanced Electrical Engineering Topics (1-3)
Prerequisite: Consent of instructor.
Modern developments in electrical engineering. May be repeated with new content. See Class Schedule for specific content. Maximum credit of nine units for any combination of Electrical Engineering 496 and 596 applicable to a bachelor’s degree. Maximum combined credit of six units of Electrical Engineering 596 and 696 applicable to a 30-unit master’s degree. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

Computer Engineering (COMPE)

UPPER DIVISION COURSES

NOTE: Prerequisites will be enforced in all 500-level courses. A copy of an official transcript will be accepted as proof. For corequisites, an enrollment confirmation form will be accepted.

All courses at the 300 level or below must be passed with a grade of C– or better in order to be used as a prerequisite for any subsequent course with the exception of Computer Engineering 160, Electrical Engineering 210, Mathematics 150, 151, Physics 195, 196, which requires a grade of C or better.

COMPE 560. Computer and Data Networks (3)
Prerequisites: Computer Engineering 271 and Electrical Engineering 410.
Wide area and local area networks, multi-layered protocols, telephone systems, modems, and network applications.

COMPE 561. Windows Database and Web Programming (3)
Prerequisite: Computer Engineering 361.
Programming applications involving file systems, relational databases, Structured Query Language (SQL), ADO.NET, client-server architecture, multithreading sockets, web servers, web browsers, web services, ASP.NET, Hyperlink Markup Language (HTML), and Extensible Markup Language (XML).

COMPE 565. Multimedia Communication Systems (3)
Prerequisite: Credit or concurrent registration in Computer Engineering 560.

COMPE 571. Embedded Operating Systems (3)
Prerequisites: Computer Engineering 260 and 475.
Real-time kernel, basic kernel services, threading and synchronization, preemptive multitasking, mutexes, spin locks, critical sections, priority scheduling, interrupts, RTOS implementation, memory management, task management, intertask communications.

COMPE 572. VLSI Circuit Design (3)
Prerequisites: Computer Engineering 271 and Electrical Engineering 330.
Design of digital integrated circuits based on CMOS technology; characterization of field effect transistors, transistor level design and simulation of logic gates and subsystems; chip layout, design rules, introduction to processing; ALU architecture.

COMPE 596. Advanced Computer Engineering Topics (1-3)
Prerequisite: Consent of instructor.
Modern developments in computer engineering. May be repeated with new content. See Class Schedule for specific content. Maximum credit of nine units for any combination of Computer Engineering 496 and 596 applicable to a bachelor’s degree. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

Electrical Engineering (E E)

GRADUATE COURSES

NOTE: All listed prerequisite courses or their equivalent for computer engineering and electrical engineering courses must be satisfied with a grade of C– or better.

E E 600. Seminar (1-3)
Prerequisite: Consent of instructor.
An intensive study in advanced electrical engineering. May be repeated with new content. See Class Schedule for specific content. Maximum credit six units applicable to a master’s degree.

E E 601. Linear System Theory and Design (3)
Prerequisite: Electrical Engineering 420.
State models and solutions of the state equations, stability, controllability and observability, realizability and minimal realizations, linear state and output feedback control, introduction to linear optimal control.

E E 602. Stochastic Signals and Systems (3)
Prerequisite: Electrical Engineering 410.
Random signals, correlation function, power spectral densities, the Gaussian process, narrow band processes. Applications to communication systems. (Formerly numbered Electrical Engineering 553.)

E E 631. RF Electronic Circuits (3)
Prerequisites: Electrical Engineering 410, 430, 602.
Distinguishing characteristics of RF circuits; analysis of noise and nonlinearity in circuits; frequency-selective and impedance-matching networks. RF amplifiers, oscillators and frequency conversion circuits. Phase-locked loops and their applications.

E E 634. RF Circuit Design (3)
Prerequisite: Electrical Engineering 540.
RF component and circuit design in frequency domain and scattering parameter terms. Linear amplifiers, stability considerations, unilateralization, matching techniques, low-noise amplifiers, wideband designs, power amplifiers, linearity considerations, oscillators, and mixers.

E E 641. RF Wireless Systems (3)
Prerequisites: Electrical Engineering 440, 558, 602.
Characteristics and performance measures of RF subsystem in wireless communication systems: wireless channel, antenna, modulators and demodulators, low-noise and power amplifiers, oscillators, ADC and DAC; receiver architectures, system-level design of RF front-end.

E E 645. Antennas and Propagation (3)
Prerequisite: Electrical Engineering 540.
Impedance characteristics and radiation patterns of thin linear antenna elements; field intensity calculations. Tropospheric and ionospheric propagation; propagation anomalies.

E E 650. Modern Communication Theory (3)
Prerequisites: Electrical Engineering 558 and 602.
Wireless digital communication; bandpass modulation and demodulation, multiple access techniques, broadband signaling techniques, spread spectrum techniques; applications include CDMA and OFDM.

E E 652. Principles and Applications of Information Theory (3)
Prerequisites: Electrical Engineering 558 and 602.
Information measure of data sources; Shannon’s theorem and capacity of communication links; rate-distortion theory and performance of source codes.
Electrical and Computer Engineering

E E 653. Coding Theory (3)
Prerequisite: Electrical Engineering 558.
Error control for digital information; arithmetic of Galois fields;
block, cyclic, convolutional and turbo encoding and decoding;
applications in digital communication and computer systems.

E E 654. Adaptive Algorithms (3)
Prerequisite: Electrical Engineering 556.
Adaptive DSP algorithms. Time varying, data dependent filters,
adaptive predictors, cancelers, equalizers. LMS and RLS algorithms,
tapped delay line, lattice, and decision feedback structures. Adaptive
beam forming and beam steering.

E E 655. Modem Design (3)
Prerequisites: Electrical Engineering 556 and 558.
System level and DSP design of modems for wireless and wireline
communications. Study modems for QAM, OFDM, CDMA, and T-1
modulation.

E E 656. Multirate Signal Processing (3)
Prerequisite: Electrical Engineering 556.
Decimation and interpolation, aliasing as a processing option in
resampling filters. Applications in communication and entertainment
media systems.

E E 657. Digital Image Processing (3)
Prerequisite: Electrical Engineering 556.
Theory of two-dimensional signals and systems, image transforms,
image enhancement, restoration and compression, image analysis
and computer vision.

E E 658. Advanced Digital Signal Processing (3)
Prerequisites: Electrical Engineering 556 and 602.
Advanced topics in FIR and IIR filter design. Quantization effects
in digital filters. Sigma-delta modulation. Parametric and
non-parametric spectral estimation. Optimization and filtering.

E E 660. High Speed Networks: Design Principles and Recent
Advances (3)
Prerequisite: Computer Engineering 560.
Provides students with knowledge of recent developments in area
of computer networks. Current research in high speed computer
networks.

E E 662. Wireless Sensor Networks (3)
Prerequisite: Computer Engineering 560.
Sensor platforms, wireless channel characteristics, time
synchronization, medium access control, topology control, routing
protocols, localization, coverage and placement, detection and
tracking, query processing.

E E 665. Multimedia Wireless Networks (3)
Prerequisite: Computer Engineering 565.
Multimedia source characteristics, compressed bitstreams, error
resiliency, quality of service, cellular video telephony, multimedia
QoS-awareWLAN, peer to peer networks, and multimedia broadcast
multicast services.

E E 672. VLSI System Design (3)
Prerequisite: Computer Engineering 572.
Design of microprocessor data paths and controllers, memory
management, pipelines, multipliers, Risc and multiprocessor systems
and applications.

E E 674. Signal and Power Integrity (3)
Prerequisites: Electrical Engineering 440 and Computer
Engineering 572.
Interconnect and power distribution network design in very-large
-scale integration systems packaging. High-speed transmission lines
and crosstalk, macromodeling of interconnects. Switching noise,
decoupling, numerical methodologies in power integrity design.

E E 685. Micro-Electro-Mechanical Systems (MEMS) Design and
Applications (3)
(Same course as Mechanical Engineering 685)
Prerequisite: Mechanical Engineering 585.
Design and manufacturing technology for micro- and nano-scale
devices. Topics include solid state transducers, microscale physics,
biomedical microelectronics, microfluidics, biosensors, and hybrid
inTEGRATION of microfabrication technology. Emphasis on biomedical
applications.

E E 740. Advanced Topics in Physical Electronics (1-3)
Prerequisites: Graduate level coursework in the area and consent
of instructor.
Selected topics in electromagnetic fields and waves, optoelectronics,
and semiconductor devices. May be repeated with new content and
consent of graduate adviser. See Class Schedule for specific content.
Maximum credit six units applicable to a master's degree.

E E 750. Advanced Topics in Communications (1-3)
Prerequisites: Graduate level coursework in the area and consent
of instructor.
Selected topics in communication theory, wireless and wireline
systems, and telecommunications engineering. May be repeated with
new content and consent of graduate adviser. See Class Schedule
for specific content. Maximum credit six units applicable to a master's
degree.

E E 795. Internship/Practicum (1) Cr/NC
Prerequisites: Eighteen units of graduate level coursework in
electrical engineering and consent of adviser.
Supervised internship or practicum experience with approval of
graduate adviser. Not applicable to an advanced degree. Maximum
credit three units.

E E 797. Research (1-6) Cr/NC/RP
Prerequisites: Consent of department chair. Open only to students
in Plan A Thesis.
Research in engineering. Maximum credit six units applicable to a
master's degree for students in Plan A only.

E E 798. Special Study (1-3) Cr/NC/RP
Prerequisite: Consent of department chair.
Individual study. Maximum credit three units applicable to a
master's degree for students in Plan B study.

E E 799A. Thesis or Project (3) Cr/NC/RP
Prerequisites: An officially appointed thesis committee and
advancement to candidacy.
Preparation of a project or thesis for the master's degree.

E E 799B. Thesis or Project Extension (0) Cr/NC
Prerequisite: Prior registration in Thesis or Project 799A with an
assigned grade symbol of RP.
Registration required in any semester or term following assignment
of RP in Course 799A in which the student expects to use the facilities
and resources of the university; also student must be registered in the
course when the completed thesis or project is granted final approval.

E E 799C. Comprehensive Examination Extension (0) Cr/NC
Prerequisite: Completion or concurrent enrollment in degree
program courses.
Registration required for all students taking the comprehensive
examination for the master's degree. Registration in 799C limited to
two semesters.