Statistics
In the Department of Mathematics and Statistics
In the College of Sciences

OFFICE: Geology/Mathematics/Computer Science 413
TELEPHONE: 619-594-6191

Faculty
Michael E. O’Sullivan, Ph.D., Professor of Mathematics,
Chair of Department
Chi-Dean Lin, Ph.D., Associate Professor of Statistics,
Associate Chair of Department
Juanjuan Fan, Ph.D., Professor of Statistics
Richard A. Levine, Ph.D., Professor of Statistics
Kung-Jong Lui, Ph.D., Professor of Statistics
Barbara Ann Bailey, Ph.D., Associate Professor of Statistics
(Justin Programs Adviser)
Jianwei Chen, Ph.D., Associate Professor of Statistics
Kristin A. Duncan, Ph.D., Assistant Professor of Statistics

Associateships
Graduate teaching associateships in statistics and biostatistics are
available and are awarded on a competitive basis by the Department
of Mathematics and Statistics. Application forms and additional
information may be secured from the office of the Department of
Mathematics and Statistics.

General Information
The Department of Mathematics and Statistics offers graduate
study leading to the Master of Science degree in statistics. Students
may pursue either the general degree or a concentration in biosta-
tics that emphasizes statistical methods and applications in the
biological, health, and medical sciences.

Statisticians and biostatisticians are engaged in the acquisition
and use of knowledge through the collection, analysis, and inter-
pretation of data. Today, almost all disciplines – from economics to
engineering, from social science to medicine – employ statistical
methods. Such methods are essential in studying relationships,
predicting results, and making informed decisions in many different
contexts. This diversity of application of this field has stimulated the
current demand for well-trained statisticians and biostatisticians at all
degree levels.

The Master of Science degree provides advanced training, with
emphasis on statistical methodology, and prepares students for careers
in industry and government as applied statisticians or biostatisticians, or
for entry into a doctoral program in statistics or biostatistics.

As part of the degree requirements, graduate students conduct
theses or research projects under the guidance of faculty with active
research interests in most general areas of probability, statistics, and
biostatistics. These research areas include biostatistical methods,
survival analysis, mathematical demography, data analysis, inference,
stochastic processes, time series, Bayesian statistics, categorical
data analysis, statistical computing, nonparametric statistics, sample
surveys, multivariate analysis, linear models, experimental design,
and clinical trials.

The graduate programs can prepare students for a teaching career.

Admission to Graduate Study
All students must satisfy the general requirements for admission to
the university with classified graduate standing, as described in Part
Two of this bulletin.

Advancement to Candidacy
All students must satisfy the general requirements for advancement
to candidacy as described in Part Four of this bulletin.

Specific Requirements for the Master of
Science Degree in Statistics
(Major Code: 17021) (SIMS Code: 776369)

In addition to meeting the requirements for classified graduate
standing and the basic requirements for the master’s degree as
described in Part Four of this bulletin, the students must meet the
following program requirements:

The student should have completed before entering the program
the following undergraduate coursework: three semesters of calculus,
one semester of linear algebra, and one semester of probability theory.
The student should also have working knowledge of a programming
language before entering the program. Students lacking some of the
above undergraduate coursework may be admitted conditionally and
may make up this coursework during the first year of the program
(these courses will not be counted toward the degree course
requirements).

The student must complete a minimum of 31 units of coursework
as described below. Upon entry to the program, the student will be
assigned to a graduate adviser in statistics. Thereafter, the adviser
will meet with the student each semester and discuss his or her
academic program. A program of study must be approved by the
graduate adviser in statistics.

1. Complete Statistics 510, 670A, 670B with no grade less than B in
each course. These are core statistics courses.

2. Complete nine units of courses in statistics and biostatistics, se-
lected from the following with the approval of the graduate adviser
in statistics: Statistics 672, 673, 676, 677, 678, 680A, 680B, 696,
700, 701, 702, 795.

3. Complete three additional units of graduate level or approved
500-level statistics courses, not including Statistics 799A.

4. Complete three additional units of graduate level or approved
500-level courses offered by the Department of Mathematics and
Statistics, not including Statistics 799A.

5. Complete three units of approved electives.


7. The thesis option (Plan A) requires approval of the graduate ad-
viser and the statistics division faculty member who will chair the
thesis committee. Students who choose Plan A must include Sta-
tistics 799A in the 31-unit program and are required to pass a final
oral examination on the thesis, open to the public.

8. In other cases, Plan B will be followed. Students who choose
Plan B are required to complete three additional units of 600- and
700-numbered statistics courses, not including Statistics 799A,
and pass a comprehensive written examination. Policy and pro-
cedures for the Plan B examination are documented and available
from the Department of Mathematics and Statistics.
Specific Requirements for the Master of Science Degree in Statistics with Concentration in Biostatistics

(Major Code: 17021) (SIMS Code: 776370)

In addition to meeting the requirements for classified graduate standing and the basic requirements for the master's degree as described in Part Four of this bulletin, the student must meet the following program requirements:

The student should have completed before entering the program the following undergraduate coursework: three semesters of calculus, one semester of linear algebra, and one semester of probability theory. The student should also have working knowledge of a programming language before entering the program. Students lacking some of the above undergraduate coursework may be admitted conditionally and may make up this coursework during the first year of the program (these courses will not be counted toward the degree course requirements).

The student must complete a minimum of 31 units of coursework as described below. Upon entry to the program, the student will be assigned to a graduate adviser in biostatistics. Thereafter, the adviser will meet with the student each semester and discuss his or her academic program. A program of study must be approved by the graduate adviser in biostatistics.

1. Complete Statistics 510, 670A, 670B with no grade less than B in each course. These are core statistics courses.
2. Complete Statistics 680A, 680B with no grade less than B in each course. These are biostatistics concentration courses.
3. Complete at least six units of courses in biostatistics and statistics, selected from the following with the approval of the graduate adviser in biostatistics: Statistics 520, 560, 580, 596, 672, 673, 676, 677, 678, 696, 700, 701, 702, 795.
4. Complete at least six units of 500-level or graduate courses from a science of application of biostatistics (e.g., bioscience, health science, or medical science), selected with the approval of the graduate adviser in biostatistics. If the student has an undergraduate degree in an area of application of biostatistics, 500-level or graduate mathematical sciences courses may be substituted with the approval of the graduate adviser in biostatistics.
5. Complete one unit of Statistics 720.
6. With approval of the graduate adviser and the faculty member who will chair the thesis committee, the student may choose Plan A and complete three units of Statistics 799A. The chair of the thesis committee must be a faculty member from the division of statistics in the Department of Mathematics and Statistics. One of the other two members of the thesis committee must be a faculty member from a science of application of biostatistics (i.e., bioscience, health science, or medical science). The student must pass an oral defense of the thesis, open to the public.
7. In other cases, Plan B will be followed. Students who choose Plan B are required to complete three additional units of 600- and 700-numbered statistics courses, not including Statistics 799A, and pass a comprehensive written examination. Policy and procedures for the Plan B examination are documented and available from the Department of Mathematics and Statistics.

Courses Acceptable on Master's Degree Programs in Statistics (STAT)

Refer to Courses and Curricula and Regulations of the Division of Graduate Affairs sections of this bulletin for explanation of the course numbering system, unit or credit hour, prerequisites, and related information.

UPPER DIVISION COURSES

NOTE: Proof of completion of prerequisites required for all upper division courses; Copy of transcript.

STAT 510. Applied Regression Analysis (3)
Prerequisite: Statistics 350A or comparable course in statistics. Methods for simple and multiple regression models, model fitting, variable selection, diagnostic tools, model validation, and matrix forms for multiple regression. Applications of these methods will be illustrated with SAS, SPSS, and/or R computer software packages.

STAT 520. Applied Multivariate Analysis (3)
Prerequisite: Statistics 350B or comparable course in statistics. Multivariate normal distribution, multivariate analysis of variance, principal components, factor analysis, discriminant function analysis, classification, and clustering. Statistical software packages will be used for data analysis.

STAT 550. Applied Probability (3)
Prerequisites: Mathematics 151 and 254. Computation of probabilities via enumeration and simulation, discrete and continuous distributions, moments of random variables. Markov chains, counting and queuing processes, and selected topics.

STAT 551A. Probability and Mathematical Statistics (3)
Prerequisite: Mathematics 252. Discrete and continuous random variables, probability mass functions and density functions, conditional probability and Bayes' theorem, moments, properties of expectation and variance, joint and marginal distributions, functions of random variables, moment generating functions. Special distributions and sampling distributions.

STAT 551B. Probability and Mathematical Statistics (3)
Prerequisite: Statistics 551A.

STAT 555. Probability and Mathematical Statistics (3)
Prerequisites: Mathematics 252.

STAT 560. Sample Surveys (3)
Prerequisite: Statistics 550 or 551A. Methods for design and analysis of sample surveys with applications to social and biological sciences. Simple random sampling, stratification and clustering, ratio and regression estimators, subsampling, selected topics in survey methodology.

STAT 570. Stochastic Processes (3)
Prerequisite: Statistics 551A.

STAT 575. Actuarial Modeling (3)
Prerequisite: Statistics 550 or 551A.

STAT 580. Statistical Computing (3)
Two lectures and two hours of activity. Prerequisite: Statistics 551B. Machine computation in development, application, and evaluation of advanced statistical techniques. Floating arithmetic and algorithm stability; numerical methods for parameter estimation (including maximum likelihood) and multivariate probability integration; simulation and other computer-intensive statistical techniques.

STAT 596. Advanced Topics in Statistics (1-4)
Prerequisite: Consent of instructor. Selected topics in statistics. May be repeated with the approval of the instructor. See Class Schedule for specific content. Limit of nine units of any combination of 296, 496, 596 courses applicable to a bachelor's degree. Maximum credit of six units of 596 applicable to a bachelor's degree. Credit for 596 and 696 applicable to a master's degree with approval of the graduate adviser.
GRADUATE COURSES

STAT 670A-670B. Advanced Mathematical Statistics (3-3)
Prerequisites: Statistics 551A. Statistics 670A is prerequisite to 670B.
Distribution of random variables, characteristic functions, limiting distributions, sampling distributions, hypothesis testing and estimation, optimality considerations, applications of the linear hypothesis, invariance and unbiasedness to analysis of variance and regression problems, sequential techniques, decision theory.

STAT 672. Nonparametric Statistics (3)
Prerequisite: Statistics 551B or 670B.
Theory and application of commonly used distribution-free test statistics, including sign and Wilcoxon tests, and corresponding nonparametric point and interval estimators. Kruskal-Wallis and Friedman tests for analysis of variance, nonparametric regression methods, and other selected topics.

STAT 673. Time Series Analysis (3)
Prerequisite: Statistics 551B or 670B.

STAT 676. Bayesian Statistics (3)
Prerequisite: Statistics 551B or 670B.
Bayes’ theorem; conjugate priors; likelihood principle; posterior probability intervals; Bayes factors; prior elicitation; reference priors; computational techniques; hierarchical models; empirical and approximate Bayesian inference; posterior sensitivity analysis; decision theory.

STAT 677. Design of Experiments (3)
Prerequisite: Statistics 550 or 551A.
Methods for design and analysis of experiments with applications to industry, agriculture, and medicine. Concepts of randomization, blocking, and replication. Incomplete block designs, fractional factorial experiments, response surface methods, selected topics.

STAT 678. Survival Analysis (3)
Prerequisite: Statistics 551B or 670B.
Survival distributions; inference in parametric survival models; life tables; proportional hazards model; time-dependent covariates; accelerated time model and inference based on ranks; multivariate time data and competing risks.

STAT 680A-680B. Advanced Biostatistical Methods (3-3)
Prerequisites: Statistics 551A. Statistics 680A is prerequisite to 680B.
Design, conduct, and analysis of experimental and observational studies including cohort, survival, case-control studies. Multifactor screening. Biological assays.

STAT 696. Selected Topics in Statistics (3)
Prerequisite: Graduate Standing.
Intensive study in specific areas of statistics. May be repeated with new content. See Class Schedule for specific content. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

STAT 700. Data Analysis Methods (3)
Prerequisites: Statistics 510 and 551B or 670B.
Computationally intensive data analysis techniques including random and mixed effects models, repeated measures and longitudinal data analysis, generalized linear models, nonlinear models, and multilevel models.

STAT 701. Monte Carlo Statistical Methods (3)
Prerequisite: Statistics 551B or 670B.
Monte Carlo and simulation intensive methods for development and application of statistical methods such as Monte Carlo and Markov chain Monte Carlo algorithms and inferential procedures; stochastic optimization, EM algorithm, and variants for parameter estimation, importance sampling, variance reduction techniques.

STAT 702. Data Mining Statistical Methods (3)
Prerequisite: Statistics 551B or 670B.
Concepts and algorithms of data mining techniques such as decision trees and rules for classification and regression, clustering, and association analysis.

STAT 720. Seminar (1-3)
Prerequisite: Consent of instructor.
An intensive study in advanced statistics. May be repeated with new content. See Class Schedule for specific content. Maximum credit six units applicable to a master’s degree.

STAT 790. Practicum in Teaching of Statistics (1) Cr/NC
Prerequisite: Award of graduate teaching associatehip in statistics.
Supervision in teaching statistics. Lecture writing, style of lecture presentation and alternatives, test and syllabus construction, and grading system. Not applicable to an advanced degree. Required for first semester GTA’s. Maximum credit four units applicable to a master’s degree.

STAT 795. Practicum in Statistical Consulting (3) Cr/NC
Prerequisite: Statistics 670B.
Statistical communication and problem solving. Short-term consulting to campus clients in design and analysis of experiments, surveys, and observational studies. Heuristics for effective problem identification, client interactions, oral and written presentations.

STAT 797. Research (1-3) Cr/NC/RP
Prerequisite: Six units of graduate level statistics.
Research in one of the fields of statistics. Maximum credit six units applicable to a master’s degree.

STAT 798. Special Study (1-3) Cr/NC/RP
Prerequisite: Consent of staff; to be arranged with department chair and instructor.
Individual study. Maximum credit six units applicable to a master’s degree.

STAT 799A. Thesis or Project (3) Cr/NC/RP
Prerequisites: An officially appointed thesis committee and advancement to candidacy.
Preparation of a project or thesis for the master’s degree.

STAT 799B. Thesis Extension (0) Cr/NC
Prerequisite: Prior registration in Thesis 799A with an assigned grade symbol of RP.
Registration required in any semester or term following assignment of RP in Course 799A in which the student expects to use the facilities and resources of the university; also student must be registered in the course when the completed thesis is granted final approval.

STAT 799C. Comprehensive Examination Extension (0) Cr/NC
Prerequisite: Completion or concurrent enrollment in degree program courses.
Registration required of students whose only requirement is completion of the comprehensive examination for the master’s degree. Registration in 799C limited to two semesters.

Teacher Education
Refer to “Education” in this section of the bulletin.

SDSU GRADUATE BULLETIN 2015-2016 409